Two circles with centres A and B of radii 3cm and 4cm, respectively intersect at two points C and D such that AC and BC are tangents to the two circles. Find the 10 times length of the common chord CD
A
48
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
58
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
56
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
54
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 48 GivenOandO′aretwocirclesitersectingatP&Qrespectively.OP&O′ParetangentstothecircleswithcentersO′&Orespectively.OP=OQ=3cmandO′P=O′Q=4cm.Tofindout−ThelengthofthecommonchordPQ.Solution−OP&O′ParetangentstothecirclesatthepointofcontactofthetangetsPandalsotheyarelinesjoiningthecentrestothepointofcontact.∴∠OPO′=90o.i.eΔOPO′isarightonewithOO′ashypotenuse.(SimilarlyΔOQO′isarightonewithOO′ashypotenuse.)⟹O′O2=OP2+O′P2⟹O′O=√32+42cm=5cm..........(i)NowbetweenΔOQO′&ΔOPO′hypOO′iscommon,sideO′P=O′QΔOQO′&ΔOPO′arecongruent.⟹∠POM=∠QOM.Buttheyarelinearpair.∴∠POM=∠QOM=90o⟹ΔPOM&ΔQOMarerighttriangleswithOP&OQashypotenuses.SobetweenΔPOM=ΔQOMwehavehypotenusesOP=OQandsideOP=OQ(radiiofthesamecircle)∴ΔPOMiscongruenttoΔQOM⟹∠OMP=∠OMQ.Buttheyareadjacentangles.∴∠OMP=OMQ=90o.......(ii)andPM=QM⟹2PM=PQ....(iii)NowbetweenΔOO′P&ΔOPMwehave∠OMP=∠OO′P=90o(fromii),∠POMcommon.SoΔOO′P&ΔOPMaresimilar.∴PM3=O′POO′⟹PM=3×45cm=2.4cm.(fromi&iii)i.ePQ=2PM=2×2.4cm=4.8cmAns−4.8cm.