wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Two circles with centres A and B of radii 3 cm and 4 cm, respectively intersect at two points C and D such that AC and BC are tangents to the two circles. Find the 10 times length of the common chord CD

A
48
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
58
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
56
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
54
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 48
GivenOandOaretwocirclesitersectingatP&Qrespectively.OP&OParetangentstothecircleswithcentersO&Orespectively.OP=OQ=3cmandOP=OQ=4cm.TofindoutThelengthofthecommonchordPQ.SolutionOP&OParetangentstothecirclesatthepointofcontactofthetangetsPandalsotheyarelinesjoiningthecentrestothepointofcontact.OPO=90o.i.eΔOPOisarightonewithOOashypotenuse.(SimilarlyΔOQOisarightonewithOOashypotenuse.)OO2=OP2+OP2OO=32+42cm=5cm..........(i)NowbetweenΔOQO&ΔOPOhypOOiscommon,sideOP=OQΔOQO&ΔOPOarecongruent.POM=QOM.Buttheyarelinearpair.POM=QOM=90oΔPOM&ΔQOMarerighttriangleswithOP&OQashypotenuses.SobetweenΔPOM=ΔQOMwehavehypotenusesOP=OQandsideOP=OQ(radiiofthesamecircle)ΔPOMiscongruenttoΔQOMOMP=OMQ.Buttheyareadjacentangles.OMP=OMQ=90o.......(ii)andPM=QM2PM=PQ....(iii)NowbetweenΔOOP&ΔOPMwehaveOMP=OOP=90o(fromii),POMcommon.SoΔOOP&ΔOPMaresimilar.PM3=OPOOPM=3×45cm=2.4cm.(fromi&iii)i.ePQ=2PM=2×2.4cm=4.8cmAns4.8cm.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Construction of Tangent given a Point on Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon