wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Two circles with centres M and N intersect each other at P and Q. The tangents drawn from point R on the line PQ touch the circles at S and T Prove that, RS=RT.
1324578_bccba585cd2f497ca547ad86a0664bb2.png

Open in App
Solution

GiventwocircleswithcentresMandNintersecteachotheratPandQ.ThetangentsdrawnfrompointRonthelinePQtouchthecirclesatSandT.wehavetoprovethatRS=RTBytangentsecanttheoremwhichstatesthatwhentangentandasecantconstructfromonesingleexternalpointtoacirclethensquareoflengthoftangentmustbeequaltotheproductoflengthsofwholesecantsegmentandtheexteriorportionofsecantsegment.
In a circle m
tangent rs=rq(as they originate from same point...........1)
In circle n
rq=rt..........(2)
form (1) and (2)
rs=rt

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 10
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon