wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Two coherent light sources having intensities in the ratio 2x produce an interference pattern. The ratio (Imax-Imin)(Imax+Imin) will be:


A

2(2x)x+1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

(2x)2x+1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

22x(2x+1)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

(2x)x+1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

22x(2x+1)


Step-1: Given data

Let the intensities be I1andI2 then it is given that I1I2=2x

Step-2: To find

(Imax-Imin)(Imax+Imin)

Step-3: Calculation

For two coherent sources, the maximum and minimum intensity is given as:

Imax=I1+I2+2I1I2=(I1+I2)2Imin=I1+I2-2I1I2=(I1+I1)2

On rearranging

Imax=(I1+I2)2Imax=I2(I1I2+1)2Imax=I2(2x+1)2

and,

Imin=(I1-I2)2Imin=I2(I1I2-1)2Imax=I2(2x-1)2

Adding maximum and minimum value

Imax+Imin=I2(2x+1)2+I2(2x-1)2Imax+Imin=I2(2x+1)2+(2x-1)2------(i)

Substracting maximum and minimum value

Imax-Imin=I2(2x+1)2-I2(2x-1)2Imax-Imin=I2(2x+1)2-(2x-1)2------(ii)

Now, Dividing eq(ii) by eq(i)

Imax-IminImax+Imin=I2(2x+1)2-(2x-1)2I2(2x+1)2+(2x-1)2

Rationalizing the denominator, we get

Imax-IminImax+Imin=4(2x)(2+4x)Imax-IminImax+Imin=2(2x)(2x+1)

Hence, Option(C) is correct.


flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fringe Width
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon