Two common tangents to the circle x2+y2=2a2 and parabola y2=8ax are
Equation of tangent to y2=8ax is
ty=x+2at2x−ty+2at2=0
It touches the given circle , so distance of centre from the tangent is equal to radius
⇒0−t(0)+2at2√1+t2=√2a⇒2at2√1+t2=√2a⇒2a2t4=a2+a2t2⇒2a2t4−a2−a2t2=0⇒2a2t4−2a2t2+a2t2−a2=0⇒2a2t2(t2−1)+a2(t2−1)=0⇒(2a2t2+a2)(t2−1)=0⇒(t2−1)=0⇒t=±1
So the equation of tangent is
x−(±1)y+2a(±1)2=0x−(±1)y+2a=0⇒y=±(x+a)
So option B is correct