Two concentric circles are of radii 13cm and 5cm. The length of the chord of the outer circle which touches the inner circle is
A
12cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
24cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
18cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 24cm Given−Oisthecentreoftwoconcentriccircles.Theradiusoftheoutercircle=OQ=r1=13cmandtheradiusoftheinnercircle=r2=5cm.AchordABoftheoutercircletouchestheinneroneatP.Tofindout−ThelengthofAB=?Solution−WejoinOA&OP.∴OA=r2&OPr1.NowOP⊥ABi.eOP⊥APsincetheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.∴ΔOAPisarightonewithOAashypotenuse.So,applyingPythagorastheorem,wegetAP==√OA2−OP2=√132−52cm=12cm.AgainAB=2×AP=2×12cm=24cmsincetheperpendicular,fromthecenterofacircletoanyofitschord,bisectsthelatter.∴ThelengthofAB=24cm.Ans−OptionB.