The correct option is
C 8cm
Given−Oisthecentreoftwoconcentriccircles
C1,theinnercirclewithradius=OP=3cmand
C2,theoutercirclewithradius=OA=5cm.
ABisachordofC2.IttouchesC1atP.
Tofindout−
ThelengthofAB=?
Solution−
Weknowthattheradiusthroughthepointof contactofatangenttoacircleisperpendiculartothetangent.
∴OP⊥AB⟹∠OPA=90o.........(i)
Againweknowthatheperpendicular,droppedfromthecenterofacircletoanyofitschord,bisectsthelatter.
∴OPbisectsABatP.
SoAB=2×AP.......(ii).
NowΔOAPisarighttrianglewithOAashypotenuse
(fromi).
OA=5cm&OP=3cm.
So,applyingPythagorastheorem,wehave
AP=√OA2−OP2=√52−32cm=4cm.
∴AB=2×AP(fromii)=2×4cm=8cm.Ans−OptionD.