The correct option is D H(Y)=H(X)+2
Let Y= aX+b where 'a' and 'b' are constants.then x=y−baand, dydx=a∴ fY(y)=1afx(y−ba)thus, the differential entopy of Y,H(Y)=−∫∞−∞fy(y)log2fy(y)dy=−∫∞−∞1afx(y−ba)log2[1afx(y−ba)]dyLet, y−ba=u ⇒dy=aduH(Y)=−∫∞−∞fx(u)log2[1afx(u)]du=−∫∞−∞fx(u)log2fx(u)du+∫∞∞fx(u)log2(a)duH(Y)=H(X)+log2(a)⇒H(Y)=H(X)+log2(4)H(Y)=H(X)+2