Given:
Two dice are thrown simultaneously then,
sample space
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5)(1,6),(2,1),(2,2),(2,3),(2,4),(2,5)(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)(6,6),⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
Total number of possible outcomes=36
LetX: be the number of sixes occur
So, the value of X can be 0,1 or 2.
Hence, random variables and its
probabilities are:
XNumber of outcomesP(X)otherwise0252536110103621136
Now, probability distribution table is
X012P(X)25361036136
We know that,
The expectation of X is given by
E(X)=μ=∑ni=1xipi
⇒E(X)=0×2536+1×1036+2×136
⇒E(X)=1036+236
E(X)=1236
⇒E(X)=13
∴ The expectation of X is E(X)=13