(i) Given : Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
"If two dice are thrown, then the sample space is"
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
B=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭
⇒B=S−A=A′
∴A∩B=A∩A′=ϕ
Hence, A,B are mutually exclusive events.
∴ Statement is true.
(ii) Given: Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
If two dice are thrown, then the sample space is
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
B=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭
⇒B=S−A=A′
∴A∩B=A∩A′=ϕ
So, A,B are mutually exclusive events.
Also,
A∪B=A∪A'=S
So, A B are exhaustive
Hence, A and B are mutually exclusive and exhaustive
∴ Statement is ture.
(iii) Given : Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
If two dice are thrown, then the sample space is
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
B=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭
B′=S−B
=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭=A
Hence, B′=A
∴ Statement is true.
(iv) Given: Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤5
If two dice are thrown, then the sample space is
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
C: getting the sum of the numbers on the dice ≤5
C={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}
A∩C={(2,1),(2,2),(2,3),(4,1)
As A∩C≠ϕ, so A and C are not mutually exclusive.
∴ Satement is false.
(v) Given: Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
If two dice are thrown, then the sample space is
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
B=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭
B′=S−B=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭=A
Therefore,
=A∩B'=A∩A=A≠ϕ
Hence, A and B′ are not mutually exclusive.
∴ Statement is false.
(vi) Given : Two dice are thrown
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤5
If two dice are thrown, then the sample space is
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
A=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭
B=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭
C={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}
A′=S−A
=⎧⎪⎨⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)⎫⎪⎬⎪⎭=B
B′=S−B
=⎧⎪⎨⎪⎩(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)⎫⎪⎬⎪⎭=A
⇒B′=A
⇒A′=B
C={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}
A'∩B'=B∩A=ϕ
So, A′ and B′ are mutually exclusive.
B′∩C=A∩C≠ϕ
So, B' and C are not mutually exclusive.
A'∩C=B∩C≠ϕ
So, A' and C are not mutually exclusive.
A'∪B'∪C=A'∪A∪C=S∪C=S
Hence, A',B',C are not mutually exclusive but exhaustive.
∴ Statement is false.