(b) 13/18
When two dices are thrown, there are (6 × 6) = 36 outcomes.
The set of all these outcomes is the sample space is given by
S = (1, 1) , (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1) , (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1) , (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1) , (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1) , (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1) , (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
∴ n(S) = 36
Let E be the event of getting the digits which are neither equal nor give a total of 9.
Then E' = event of getting either a doublet or a total of 9
Thus, E' = {{1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (3, 6), (4, 5), (5, 4), (6, 3)}
i.e. n(E') = 10
P(E') =
Hence, required probability P(E) = 1 P(E')
=