Let S be the sample space.
S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}
(i) Let A be the event that the number on each die is even.
∴A={(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)}
∴n(A)=9
∴P(A)=n(A)n(S)=936=14=0.25
(ii) Let B be the event that the sum of numbers appearing on two dice is 5.
B=(1,4),(2,3),(3,2),(4,1)
∴n(B)=4
∴P(B)=n(B)n(S)=436=19=0.11
Hence, the sum of the probabilities is 0.25+0.11=0.36.