Since point P,A,B are collinear
∴ ∣∣
∣∣z¯z1a¯a1b¯b1∣∣
∣∣=
⇒ z(¯a−¯b)−¯z(a−b)+(a¯b−¯ab)=0 (i)
Similarly, points P,C,D are collinear, so
z(¯c−¯d)−¯z(c−d)+(c¯d−¯cd)=0
On applying (i)×(c−d)−(ii)(a−b), we get
∴ z(¯a−¯b)(c−d)−z(¯c−¯d)(a−b)=(c¯d−¯cd)(a−b)−(a¯b−¯ab)(a−d) (iii)
∵ z¯z=r2=k (say)
∴ ¯a=ka,¯b=kb,¯c=kc etc.
From equation (iii) we get
z(ka−kb)(c−d)−z(kc−kd)(a−b)=(ckd−kdc)(a−b)−(akb−bka)(c−d)
∴ z=a−1+b−1−c−1−d−1a−1b−1−c−1d−1