So net force on it
Fnet=2Fcos θ
Where F=14πϵ0.Qq(x2+d24) and cos θ=x√x2+d24
∴Fnet=2×14πϵ0.Qq(x2+d24)×x(x2+d24)1/2
=2Qqx4πϵ0(x2+d24)3/2
For Fnet to be maximum dFnetdx=0
i.e. ddx⎡⎢
⎢⎣2Qqx4πϵ0(x2+d24)3/2⎤⎥
⎥⎦=0
or [(x2+d24)−3/2−3x2(x2+d24)−5/2]=0
i.e. x=±d2√2