Let lr=1−ecosθ be the equation of one ellipse.
Then the equations of the ellipse having a focus common, same eccentricity and axis at right angles to first will be
lr=1−esinθ
The equation of tangent at point ′α′ on the first ellipse will be
lr=cos(θ−α)−ecosθ
lr=cosθ(cosα−e)+sinθsinα.....1
Similarly the equation of the tangent at some point β of the second ellipse will be
lr=cos(θ−β)−esinθ
or lr=cosθcosβ+sinθ(sinβ−e)....2
Since the lines given by 1 and 2 are the same comparing we get
cosα−e=cosβ ...... (3) and sinβ−e=sinα ..... (4)
Subtracting we get cosα−cosβ=sinβ−sinα
or 2sinα+β2sinβ−α2=2cosα+β2sinβ−α2
or tanα+β2=1; hence α+β2=π4
Adding 3 and 4, we have
cosα−cosβ−sinα+sinβ=2e
Dividing the whole equation by √2 we get;-
sin(π4−α)+sin(β−π4)=2e√2=√2e
or 2sinβ−α2cos(α+β2−π4)=√2e
or sinβ−α2=√2e2=1√2e(∵α+β2=π4)
β−α=2sin−1(1√2e)