Two equal negative charges each of charge −q are fixed at points (0,a) and (0,−a) on the y−axis. A positive charge Q is released from rest at a point (2a,0) on the x− axis. The charge Q will
A
Execute simple harmonic motion about the origin.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Move to the origin and remain at rest there.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Move to infinity.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Execute oscillatory but not simple harmonic motion.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Execute oscillatory but not simple harmonic motion. Let the charge Q be at P, with OP=x. The resultant force F is along the x− axis directed towards the origin. The charge Q moves to O, and acquires kinetic energy. It will cross O and move to -ve x− axis until it comes to rest. It is again attracted towards O and crosses it and this process continues. Therefore, charge Q executes oscillatory motion.
Let AP=BP=r=√a2+x2.
Then F1=F2=qQ4πϵ0r2
Let ∠APO=∠BPO=θ
The resultant force on Q is F=F1cosθ+F2cosθ=2qQ4πϵ0r2cosθ F=2qQ4πϵ0x(a2+x2)1.5
Thus, F is not of the form F=kx (where k= constant) and hence the motion is not simple harmonic.
Hence, the correct choice is (d).
Why this question ?Caution: A body will perform simpleharmonic oscillation only when therestoring force is directed toward theequilibrium or mean position.