Let, A and B be the two events.
Given both A and B are independent,
P( AB )=P( A )⋅P( B )
Now,
P( A ′ B ′ )=[ 1−P( A ) ]⋅[ 1−P( B ) ] P( A ′ ∩ B ′ )=1−P( A )−P( B )+P( A )⋅P( B ) 1−P( A∪B )=1−P( A )−P( B )+P( A )⋅P( B ) P( A∪B )=P( A )+P( B )−P( A )⋅P( B )
Solve further.
P( A )+P( B )−P( AB )=P( A )+P( B )−P( A )⋅P( B ) P( AB )=P( A )⋅P( B )
Hence, the correct option is (B).
If A and B are two mutually exclusive and exhaustive events, then P(B)=1−P(A).