Sum is prime
2:(1,1)
3:(1,2),(2,1)
5:(2,3),(3,2),(1,4),(4,1)
7:(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)
11:(5,6),(6,5)
∴P(prime)=1536
Possible perfect squares are 4,9
4:(1,2),(2,1),(2,2)
9:(4,5),(5,4),(6,3),(3,6)
P(perfect square)=736
Required probability,
p=436+(1436)(436)+(1436)2(436)+⋯736+(1436)×(736)+(1436)2(736)+⋯
=4[136+(1436)(136)+(1436)2(136)+⋯]7[136+(1436)×(136)+(1436)2(136)+⋯]
⇒p=47
∴14p=14×47=8