Method 1:
For bullet A. Let t be the time taken by bullet A to reach P.
Vertical motion: uy=0,S=ut+12at2,Sy=−(10−y)
ay=−10ms−2,⇒10−y=5t2 ...(i)
Horizontal motion: x=5√3t ...(ii)
For bullet B. Let (t+l) be the time taken by bullet B to reach P.
Vertical motion: ↑+uy=+5√3sin60o=+7.5ms−1
S=ut+12at2;ay=−10ms−2
y−10=7.5(t+t′)−5(t+t′)2 ....(iii)
Horizontal motion: x=(5√3cos60o)(t+t′)
⇒5√3t+5√3t′=2x .....(iv)
Substituting the value of x from (ii) in (iv), we get
5√3t+5√3t′=10√3t
⇒t=t′
a. Putting t=t′ in (iii),
y−10=16t−20t2 ..(v)
Adding (i) and (v),
0=15t−15t2⇒t=1s
So time interval between the firings is t′=1s
b. Putting t=1 in (ii), we get x=5√3m.
Putting t=1 in (i), we get y=5. Therefore, the coordinates of point P are (5√3,5) in meters.