The correct option is A (2,−4,−7)
Consider the line L1
x−31=y+13=z−6−1=λ⇒x=λ+3, y=3λ−1, z=−λ+6
Now, consider the line L2
x+57=y−2−6=z−34=μ
⇒x=7μ−5, y=−6μ+2, z=4μ+3
Both the lines L1 and L2 intersects each other.
So, λ+3=7μ−5
⇒7μ−λ=8 ⋯(1)
and 3λ−1=−6μ+2
⇒6μ+3λ=3 ⋯(2)
From equation (1) and (2)
λ=−1,μ=1
∴x=2,y=−4,z=7
∴ Coordinates of the intersection of L1 and L2 is R(2,−4,7)
Hence, reflection of R in the xy-plane is (2,−4,−7)