Let,
Q1=σ4πR2Q2=σ4π(2R)2=4(σ4πR2)
Total charge after connecting = Total charge before connecting
Q′1+Q′2=Q1+Q2
Q′1+Q′2=σ4πR2+4(σ4πR2)
Q′1+Q′2=5(σ4πR2)=5Q1
Q′1+Q′2=5Q1 ........(1)
After connecting they will have same potential,
V′1=V′2
14πε0Q′1R=14πε0Q′22R
Q′1=Q′22Q′2=2Q′1
From (1) we get,
Q′1+2Q′1=5Q1
Q′1=53Q1 and
Q′2=103Q1
And new surface chaege density becomes,
σ1=Q′14πR2=53Q14πR2=53σ
σ2=Q′24π(2R)2=103×4[Q14πR2]=56σ
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
Hence, (a) is the correct answer.