Equation of line AB,
P−P0=tan60o(V−V0)⇒P−P0=√3(V−V0) ⋅⋅⋅(1)
Equation of line BC,
P−P0=−1√3(V−6V0) ⋅⋅⋅(2)
Subtracting (2) from (1)
0=√3(V−V0)+1√3(V−6V0)
⇒(√3+1√3)V−(√3+6√3)V0=0
⇒V=9V0/√34/√3=9V04
∴Temparature of B , TB=PBVB2R=3P0(9V04)2R
Temparature of A , TA=PAVA2R=P0V02R
∴TBTA=27P0V08RP0V02R=274=3322
Hence,3x2y=3322
Therefore, x+y=3+2=5