wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X. [CBSE 2015]

Open in App
Solution

As, X denote the larger of the two numbers obtained.

So, X can take the values 3, 4, 5, 6 and 7.

Now,

PX=3=P2,3 or 3,2=2×16×15=115,PX=4=P2,4 or 4,2 or 3,4 or 4,3=4×16×15=215,PX=5=P2,5 or 5,2 or 3,5 or 5,3 or 4,5 or 5,4=6×16×15=15,PX=6=P2,6 or 6,2 or 3,6 or 6,3 or 4,6 or 6,4 or 5,6 or 6,5=8×16×15=415,PX=7=P2,7 or 7,2 or 3,7 or 7,3 or 4,7 or 7,4 or 5,7 or 7,5 or 6,7 or 7,6=10×16×15=13

The probability distribution of X is as follows:
X: 3 4 5 6 7
P(X): 115 215 15 415 13

So, Mean, EX=3×115+4×215+5×15+6×415+7×13=315+815+1515+2415+3515=8515=173Also, EX2=32×115+42×215+52×15+62×415+72×13=915+3215+7515+14415+24515=50515=1013VarX=EX2-EX2=1013-1732=1013-2899=303-2899=149

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon