Two of the roots of the equation (λ−2)(x2+x+1)2−(λ+2)(x4+x2+1)=0 are equal, then the value(s) of ′λ′ is/are
Given, (λ−2)(x2+x+1)2−(λ+2)(x4+x2+1)=0
⇒(λ−2)(x2+x+1)2−(λ+2)((x2+1)2−x2)=0
⇒(x2+x+1)[(λ−2)(x2+x+1)−(λ+2)(x2−x+1)]=0
But, (x2+x+1)=0 can't have any real roots.
∴(λ−2)(x2+x+1)−(λ+2)(x2−x+1)=0
This will have equal roots.
Solving this, we get
−4x2+2λx−4=0
⇒2x2−λx+2=0
It has equal roots.
So, discriminant, D=0
⇒D=λ2−16=0
⇒λ=±4