be a square.
P(3,4) and R(1,−1)
Let co-ordinates of a point Q(x,y)
PQ=QR
Squaring on both sides,
PQ2=QR2
⇒ (x−3)2+(y−4)2=(x−1)2+(y−1)2
Solving this we get,
⇒ x2−3x+9+y2−8y+16=x2−2x+1+y2+2y+1
⇒ 4x+10y=23 ---- ( 1 )
⇒ x=23−10y4 ----- ( 2 )
Length of the hypotenuse =√2×side
⇒ PR=√2PQ
⇒ PR2=2PQ2
⇒ (3−1)2+(4+1)2=2[(x−3)2+(y−4)2]
⇒ 4+25=2[x2−6x+9+y2−8y+16]
⇒ 29=2[x2−6x+y2−8y+25]
⇒ 29=2x2−12x+2y2−16y+50
⇒ 29=2(23−10y4)2−12(23−10y4)+2y2−16y+50 [ From ( 2 ) ]
⇒ 29=216(529−460y+100y2)−69+30y+2y2−16y+50
⇒ 29=66.125−57.5y+12.5y2−69+30y+2y2−16y+50
⇒ 29=47.125−43.5y+14.5y2
⇒ 14.5y2−43.5y+18.125=0
By soving we get,
y=52 and y=12
Substituting value of y in equation ( 1 ) we get,
⇒ x=−12 and x=92
Vertices of a square are (92,12) and (−12,52)