Two parallel chords AB and CD are 42cm apart and lie on the opposite sides of the centre of a circle. If AB = 36cm and CD = 48cm, find the radius of the circle.
30 cm
AB = 36 cm, CD = 48cm and PQ = 42 cm
AP = PB = 12 AB = 18 cm
CQ = DQ = 12 CD = 24cm
Let OQ = x cm, then OP = (42 - x) cm
Join OA and OC
OA = OC = r, radius of the circle
In right angled triangle △ OAP
OA2=OP2+AP2
⇒ r2=(42−x)2+182..........(i)
In right angled triangle △ OCQ
OC2=OQ2+CQ2
⇒ r2=x2+242..........(ii)
From (i) and (ii) we get
(42−x)2+182. = x2+242
⇒84x=1512 ⇒ x=18
r2=x2+242
=182+242
= 324 + 576 = 900
r = √900 = 30 cm