Radius of the circle =302=15 cm
Chord AB || chord CD.
Length of one chord AB = 24 cm and distance MN between the two chords = 21cm.
∵ By Theorem- The perpendicular from the centre to the chord bisects it
∴ AM=12 AB=12×24=12 cm
In right Δ OAM,
OA2=OM2+AM2 (Pythagoras Theoram)
⇒ (15)2=OM2+(12)2 ⇒ 225=OM2+144
∴ OM2=225−144=81=(9)2
∴ OM = 9 cm. But MN = 21 cm
∴ ON = MN - OM = 21 - 9 = 12 cm
Similarly in right Δ OCN,
OC2=ON2+CN2⇒ (15)2=(12)2+CN2
⇒ 225=144+CN2
⇒ CN2=225−144=81=(9)2
∴ CN=9cm
∵ CN=12CD
∴ CD=2×CN=2×9=18cm