Given,
Angular velocity ω=2rad/s
Radius, r=2m .
Time, t=πω
Radius of A and B is rand2r
Angular velocity of A and B is 2ωandω
Tangential velocity of A and B is.
VA=Vsin(2ωt)^i+Vcos(2ωt)j
VA=(2ω)r[sin(2ωt)^i+cos(2ωt)j]
At time,t=πϖ, VA=2ωr[sin(2π)^i+cos(2π)^j]=2ωr^j
VB=Vsin(2ϖt)^i+Vcos(2ϖt)j
VB=ω(2r)[sin(ϖt)^i+cos(ϖt)j]
AT time,t=πϖ ,VB=2ωr[sin(π)^i+cos(π)^j]=2ωr(−^J)
Relative velocity VA−VB=2ωr^j−2ωr(−^j)=4ωr^j=4×3×2=24ms−1
Hence, Relative velocity is 24ms−1