Two particles of mass 1 kg and 3 kg have position vectors 2^i+3^j+4^kand−2^i+3^j−4^k respectively. The centre of mass has a position vector
→r1 = 2^i+3^j+4^k
→r2 = −2^i+3^j−4^k
\(\vec r_{cm} = \frac {m_1 \vec r_1 + m_2 \vec r_2}{m_1 + m_2} = \frac {1(2\hat i + 3\hat j + 4\hat k) + (-2\hat i + 3\hat j - 4\hat k)}{1 + 3}\)
→rcm = −^i+3^j−2^k