The total number of cases =64=1296
Let the sum of the throws of the dice of the first person be a and the second person be b.
Now, let us consider the number of cases when a and b acquire different values.
a=b=2 , Cases =1×1=1
a=b=3 , Cases =2×2=4
a=b=4 , Cases =3×3=9
a=b=5 , Cases =4×4=16
a=b=6 , Cases =5×5=25
a=b=7 , Cases =6×6=36
a=b=8 , Cases =5×5=25
.
.
.
a=b=12 , Cases =1×1=1
Total number of cases =1+4+9+...+36+25+...+4+1=146
Probability =1461296=73648
Hence, 648p=73