Two point charges each 50μC are fixed on the y-axis. Another charged particle having charge Q1 and a mass 20 gm moving with a speed of 20ms−1. Find the speed of charged particle when it reaches the origin? Also, find the distance of particle when Kinetic energy is 0.
Step 1: Given
Charge of two point charges= 50μC
Mass of another charge, Q1=20gm
Speed of Q1=20ms−1
Step 2: Formula used and calculation
Let the speed of the particle at origin be v. Applying the energy conservation at A and O.
Initial energy=final energy
KA+UA=Ko+Uo
12mv2A+(−Q)VA=12mv2o+(−Q)Vo
12mv2A−2KQ25=12mv2o−2KQ24
12mv2o=12×20×10−3×20×20+9×109×(50×10−6)2(14−15)
12mv2o=4+9×2.5×120
v2o=225
vo=25ms−1
Let at point B kinetic energy is 0.
Applying the energy conservation at A and B.
KA+UA=KB+UB
12mv2A+(−2KQ25)=0+(−KQ2√42+x2)
12mv2A=2KQ25−KQ2√42+x2
12mv2A=9×109×(50×10−6)2(25−1√42+x2)
4=22.5×25−22.5√42+x2
22.5√42+x2=9−4
√42+x2=4.5
x2=4.52−42
x=√4.25
x=2.06m