Given,Two right triangles ABC & DBC and they are drawn on the same hypotenuse BC & on the same sides BC. Ref. image
AC & BD intersect each other. at 'P'. As per given data
Also given, to prove that
AP×PC=BP×PD
as both are right angle triangles, let us use Pythagorean's theorem for the given triangles.
as per fig (a)
From ΔCDP we get,
CD2=CP2−DP2 (∵ from fig (a) we get, CP=CA+AP DP=DB+BP)
=(CA+AP)2−(DB+BP)2
[∵(a+b)2=a2+2ab+b2]
CD2=CA2+AP2+2CA.AP−[DB2+BP2+2DB.BP]
CD2=CA2+AP2+2CA.AP−DB2−BP2−2BD.BP
CD2+DB2=CA2+AP2−BP2+2CA.AP−2DB.BP
CB2=CA2−(BP2−AP2)+2CA.AP−2DB.BP
CB2=CA2−AB2+2CA.AP−2DB.BP
CB2−CA2+AB2=2CA.AP−2DB.BP
AB2+AB2=2CA.AP−2DB.BP
2AB2=2[CA.AP−DB.BP]
AB2=(PC−AP)AP−(DP−BP)BP
AB2=AP×PC−AP2−DP×BP+BP2
AB2=AP.PC−DP.BP+AB2
=AP×PC−DP×BP
⇒AP×PC=DP×BP
Hence proved.