Let 4 roots be a,b,c,d so that ab=−32 from here we show
a+b+c+d=18→1
ab+ac+ad+bc+bd+cd=k→2
abc+abd+acd+bcd=−200→3
abcd=−1984→4
From last 3 equations, we see that cd=abcdab=−1984−32=62
So second equation becomes −32+ac+ad+bc+bd+62=k
And so ac+ad+bc+bd=k−30
Let p=a+b & q=c+d
From 3
−200=ab(c+d)+cd(a+b)
−200=−32q+62p
We know, a+b+c+d=18 gives p+q=18. Then we have 2 linear equation in p and q, which we solve to obtain p=4 & q=14
∴We have (a+b)4(c+d)14=k−30
∴k=4×14+30=86