Given, x+y+z=900
3x+2y+z=1600
4x+y+3z=2300
The given system of linear equation may be written in matrix form as: AX=B ......(i)
where,
A=⎡⎢⎣111321413⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦,B=⎡⎢⎣90016002300⎤⎥⎦
co-factors of elements of first row are
A11=∣∣∣2113∣∣∣=6−1 =5,
A12=−∣∣∣3143∣∣∣=−(9−4)=−5
A13=∣∣∣3241∣∣∣=3−8=−5
co-factors of elements of second row are
A21=−∣∣∣−1113∣∣∣=−(3−1)=−2
A22=−∣∣∣1143∣∣∣=3−4=−1
A23=−∣∣∣1141∣∣∣=−(1−4)=3
co-factors of elements of 3rd row are
A31=∣∣∣1121∣∣∣=1−2=−1
A32=−∣∣∣1131∣∣∣=−(1−3)=2
A33=−∣∣∣1132∣∣∣=2−3=−1
|A|=a11A11+a12A12+a13A13
=1×5+1×(−5)+1×(−5)=−5
Adj A=⎡⎢⎣5−5−5−2−13−12−1⎤⎥⎦T=⎡⎢⎣5−2−1−5−12−53−1⎤⎥⎦
A−1=1|A| Adj A=1−5⎡⎢⎣5−2−1−5−12−53−1⎤⎥⎦
from (i), X=A−1B
=−15⎡⎢⎣5−2−1−5−12−53−1⎤⎥⎦⎡⎢⎣90016002300⎤⎥⎦
=−15⎡⎢⎣4500−3200−2300−4500−1600+4600−4500+4800−2300⎤⎥⎦
=−15⎡⎢⎣−1000−1500−2000⎤⎥⎦=⎡⎢⎣200300400⎤⎥⎦
⇒x=200,y=300,z=400
Thus, value of each award is Rs 200,Rs 300 and Rs 400.
Punctuality should also be consider for award.