Two sides of a triangle are 2 and √3 and the included angle is 30′ then the in-radius r of the triangle is equal
12(√3−1)
We know that r=(s−a)tanA2.
Let the given sides be b and c and A=30∘ then
a2=b2+c2−2bccosA by cosine rule =4+3−4√3cos30∘a2=7−4√3×√32=7−6=1∴a2=1⇒a=12s=a+b+c=1+2+√3=3+√3∴2s−2a=3+√3−2⇒(s−a)=√3+12A=30∘⇒A2=15∘∴tanA2=tan15∘=√3−1√3+1∴r=(s−a)tanA2=√3+12.√3−1√3+1=12(√3−1)