The correct option is C 2:1
Here, y1=5(sin2πt+3√cos2πt)y1=5(sin2πt+3cos2πt)
y2=5sin(2πt+π4)y2=5sin(2πt+π4)
as of the form of y1=αsin2πt+βcos2πty1=αsin2πt+βcos2πt
Let α=rcosθ=5,β=rsinθ=53√α=rcosθ=5,β=rsinθ=53
∴y1=rcosθsin2πt+rsinθcos2πt=rsin(2πt+θ)∴y1=rcosθsin2πt+rsinθcos2πt=rsin(2πt+θ)
also, α2+β2=r2cos2θ+r2sin2θ=r2α2+β2=r2cos2θ+r2sin2θ=r2
or r=α2+β2−−−−−−√=512+(3√)2−−−−−−−−−√=10r=α2+β2=512+(3)2=10
∴y1=10sin(2πt+θ)∴y1=10sin(2πt+θ)
∴A1A2=105=2