Two stones lying on the surface of the Earth have mass, a gravitational force will always exist between them and it will try to pull the stones towards each other. But actually, we don’t see the stones moving towards each other, why?
Statement 1: The gravitational force between the stones is very small (in the range of 10−11N).
Statement 2: Stones are lying on a flat surface, so they cannot move.
Statement 3: The gravitational force between the bodies cannot overcome the friction.
Statement 4: The stones are irregular in shape, so they cannot move.
Which statements explains the reason for the above question?
Statement 1 and 3 are the reasons
Let’s take an example to understand the question:
Let us consider the mass of each stone as 5 kg. They are separated by a distance of 1 m.
F = GmMr2
F = 6.67×10−11×5×51= 166.67×10−11 N
The gravitational force is very small. Thus, statement 1 is correct.
For the objects to move a net force should act on them. The gravitational force, in this case, is too small to overcome frictional force. So, the net force on the bodies is zero. Therefore they do not move. Thus, statement 3 is also correct.