L1:3x+4y=5, m1=−34 and
L2:4x−3y=15, m2=43
Solving both, we get point of intersection A≡(3,−1)
Also, m1⋅m2=−1
⇒∠A=90∘
Now, if we choose points B and C on line L1 and L2 respectively such that AB=AC, then △ABC will be isosceles triangle.
⇒∠ABC=∠BCA=45∘
BC is passing through (1,2)
So possible equation of BC are :
(y−2)=tan(θ±45∘)(x−1)
( Here, tanθ=−34 )
⇒(y−2)=tanθ±tan45∘1∓tanθ⋅tan45∘(x−1)
⇒x−7y+13=0 ⋯(1)
⇒a1=1, b1=−7
or, −7x−y+9=0 ⋯(2)
⇒a2=−7, b2=−1
∴a2b1−a1b2=49+1=50