The correct option is C α−β=π2
Given equation of ellipse is
x29+y24=1
Here, a2=9,b2=4
Let m be the slope of tangent to ellipse.
Equation of tangent to ellipse is
y=mx+√9m2+4
Given equation of hyperbola is
x2−y2=5
Any point on the hyperbola is of the form (√5secθ,√5tanθ)
Since, the tangent passes through (√5secθ,√5tanθ)
√5tanθ−m√5secθ=√9m2+4
Squaring both sides, we get
9m2+4=5tan2θ+5m2sec2θ−10msecθtanθ
⇒(9−5sec2θ)m2+10tanθsecθm+(4−5tan2θ)=0
⇒(4−5tan2θ)+10tanθsecθm+(4−5tan2θ)=0
Here, product of roots m1m2=1
⇒tanαtanβ=1
Now, tan(α+β)=tanα+tanβ1−tanαtanβ
tan(α+β)=m1+m21−1
⇒(α+β)=π2