The numbers are 1,2,3,4,5,6
Let X be the bigger number among the two number.
i.e., X = 2,3,4,5,6
P(x=2)=P(1,2)
⟹=16C2=115
P(x=3)=P(1,3)(2,3)
⟹=26C2=215
P(x=4)=P(1,4)(2,4)(3,4)
⟹=36C2=315=15
P(x=5)=P(1,5)(2,5)(3,5)(4,5)
⟹=46C2=415
P(x=6)=P(1,6)(2,6)(3,6)(4,6)(5,6)
⟹=56C2=515=13
Hence the probability distribution is :
X | 2 | 3 | 4 | 5 | 6 |
p(X=x) | 115 | 215 | 15 | 415 | 13 |
Mean = 2(115)+3(215)+4(15)+5(415)+6(13)
⟹=215+65+103
⟹=215+6815⟹7015
Hence, Mean = 143
Using Variance formula,
Var(X)=(X−μ)2×P(X=x)⟹Var(X)=(2−143)2×115+(3−143)2×215+(4−143)2×15+(5−143)2×415+(6−143)2×13⟹Var(X)=(−83)2×115+(−53)2×215+(−23)2×15+(13)2×415+(43)2×13⟹Var(X)=649×15+509×15+49×5+49×15+169×3⟹Var(X)=64+50+12+4+809×15=210135=149
Hence, the variance is 149