Given: Length of train \(๐ด, ๐ _1=100~ ๐ \)
Acceleration of train \(๐_๐ด=0.3 ~๐/๐ ^2\)
Length of train \(๐ต, ๐ _2=125 ~๐\)
Acceleration of train \(๐_๐ต=0.2 ~๐/๐ ^2\)
Relative velocity of train \(๐ด~ ๐ค.๐.๐ก.\) train\(๐ต\)
\(๐_{AB}=๐_๐ดโ๐_๐ต=10โ(โ10)\)
\(๐_{AB}=20~ ๐/๐ \).
As per the question
\(๐_๐ด=0.3 ~๐/๐ ^2\\ ๐_๐ต=0.2 ~๐/๐ ^2\)
Therefore,
Relative acceleration
\(๐_{AB}=0.3~m/s^2+0.2~m/s^2\)
\(๐_{AB}=0.5~ ๐/๐ ^2\)
As we know, from \(2^{nd}\) equation of motion we get,
\(๐ =๐ข๐ก+\dfrac{1}{2}~ ๐๐ก^2\) โฆ(๐)
As given,
\( s~=~s_1+๐ _2=100~m+125~m=225~ ๐\)
By putting the values in equation (๐) we get,
\(225=20t+\dfrac{1}{2}ร0.5ร๐ก^2\)
\(0.5๐ก^2+40๐กโ450=0\)
\( ๐ก=\dfrac{โ40ยฑ\sqrt{1600+4ร(0.5)ร450}}{1}\)
\(=โ40ยฑ50\)
Therefore,
\(๐ก=10~s ~\text{(Taking} +๐ฃ๐~ \text{value}).\)