wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Two trains one of length \(100 ~๐‘š\) and another of length \(125~ ๐‘š\), are moving in mutually opposite directions along parallel lines, meet each other, each with speed \(10 ~๐‘š/๐‘ \). If their acceleration are \(0.3~ ๐‘š/๐‘ ^2\) and \(0.2 ~๐‘š/๐‘ ^2\) respectively, then the time they take to pass each other will be

Open in App
Solution

Given: Length of train \(๐ด, ๐‘ _1=100~ ๐‘š \)
Acceleration of train \(๐‘Ž_๐ด=0.3 ~๐‘š/๐‘ ^2\)
Length of train \(๐ต, ๐‘ _2=125 ~๐‘š\)
Acceleration of train \(๐‘Ž_๐ต=0.2 ~๐‘š/๐‘ ^2\)
Relative velocity of train \(๐ด~ ๐‘ค.๐‘Ÿ.๐‘ก.\) train\(๐ต\)
\(๐‘‰_{AB}=๐‘‰_๐ดโˆ’๐‘‰_๐ต=10โˆ’(โˆ’10)\)
\(๐‘‰_{AB}=20~ ๐‘š/๐‘ \).
As per the question
\(๐‘Ž_๐ด=0.3 ~๐‘š/๐‘ ^2\\ ๐‘Ž_๐ต=0.2 ~๐‘š/๐‘ ^2\)
Therefore,
Relative acceleration
\(๐‘Ž_{AB}=0.3~m/s^2+0.2~m/s^2\)
\(๐‘Ž_{AB}=0.5~ ๐‘š/๐‘ ^2\)
As we know, from \(2^{nd}\) equation of motion we get,
\(๐‘ =๐‘ข๐‘ก+\dfrac{1}{2}~ ๐‘Ž๐‘ก^2\) โ€ฆ(๐‘–)
As given,
\( s~=~s_1+๐‘ _2=100~m+125~m=225~ ๐‘š\)
By putting the values in equation (๐‘–) we get,
\(225=20t+\dfrac{1}{2}ร—0.5ร—๐‘ก^2\)
\(0.5๐‘ก^2+40๐‘กโˆ’450=0\)
\( ๐‘ก=\dfrac{โˆ’40ยฑ\sqrt{1600+4ร—(0.5)ร—450}}{1}\)
\(=โˆ’40ยฑ50\)
Therefore,
\(๐‘ก=10~s ~\text{(Taking} +๐‘ฃ๐‘’~ \text{value}).\)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon