The correct option is D x2+y2+z2=1
Given that
→a⋅→b=0,|→a|2=|→b|2=|→c|2=1
→a⋅→c=cosα, →b⋅→c=cosα
→a×→b=^nsin90∘⇒|→a×→b|2=1
→a⋅(→a×→b)=0
and →b⋅(→a×→b)=0
→c=x→a+y→b+z(→a×→b)
Scalar multiplication of →a, →b with →c one by one, we get
→c⋅→a=x⇒x=cosα→c⋅→b=y⇒y=cosα
Since, |→c|2=1∴|x→a+y→b+z(→a×→b)|2=1⇒x2⋅1+y2⋅1+z2⋅1+2xy(0)+2yz(0)+2xz(0)=1⇒z2+cos2α+cos2α=1⇒z2=−(2cos2α−1)⇒z2=−cos2α