Two vectors A⇀and B⇀ are such that A⇀+B⇀=A⇀-B⇀. Then
A⇀.B⇀=0
A⇀×B⇀=0
A⇀=0
B⇀=0
Explanation for the correct option
Given that A⇀+B⇀=A⇀-B⇀
⇒ B⇀=-B⇀
Let B⇀=xi^+yj^+zk^
⇒-B⇀=-xi^-yj^-zk^
⇒x=-x,y=-y,z=-z
This is only possible when the vector B⇀is a null vector.
⇒B⇀=0
Thus B⇀=0 when A⇀+B⇀=A⇀-B⇀.
Hence option(D) is the correct answer.