The correct option is C cos−1(n2−1n2+1)
Given, |A|=|B|
or A=B.......(i)
Let magnitude of (A+B) is R and for (A−B) is R′
Now, R=A+B
and R2=A2+B2+2ABcosθ
R2=2A2+2A2cosθ .........(ii)
[∵ using Eq. (i)]
R′=A−B
R′2=A2+B2−2ABcosθ
R′2=2A2−2A2cosθ.......(iii)
[∵ using Eq. (i)]
Given, R=nR′ or (RR′)2=n2
Dividing Eq. (ii) by Eq. (iii), we get
n21=1+cosθ1−cosθ
or n2+1n2−1=(1+cosθ)+(1−cosθ)(1+cosθ)−(1−cosθ) [Apply Componendo- Dividendo rule]
or n2−1n2+1=(1+cosθ)−(1−cosθ)(1+cosθ)+(1−cosθ) [Take reciprocal on both sides]
⇒n2−1n2+1=2cosθ2=cosθ
or θ=cos−1(n2−1n2+1)