The correct option is C cos−1[n2−1n2+1]
Given, →R=→A+→B
|→A+→B|=√A2+B2+2ABcosθ
As the magnitude of →A is equal to the magnitude of →B . Hence,
|→A+→B|=√A2+A2+2A2cosθ
Similarly, →R=→A−→B
|→A−→B|=√A2+B2+2A2cosθ
Given,
|→A+→B|=n|→A−→B|
|→A+→B|2=n2|→A−→B|2
A2+A2+2A2cosθ=n2(A2+A2−2A2cosθ)
2A2(1+cosθ)=2A2n2(1−cosθ)
1+cosθ=n2−n2cosθ
cosθ(1+n2)=n2−1
cosθ=n2−1n2+1
θ=cos−1(n2−1n2+1)
Final Answer: (c)