Given,
A1A2=35
As we know, I∝A2
∴√I1I2=35 .......(1)
The formula for the resultant intensity is given by,
I=I1+I2+2√I1I2cosϕ
Maximum intensity is obtained, when
cosϕ=1
⇒Imax=(√I1+√I2)2
Minimum intensity is obtained, when
cosϕ=−1
⇒Imin=(√I1−√I2)2
Hence,
ImaxImin=(√I1+√I2√I1−√I2)2=⎛⎜
⎜
⎜
⎜
⎜
⎜⎝√I1I2+1√I1I2−1⎞⎟
⎟
⎟
⎟
⎟
⎟⎠2
Putting the value fron equation (1),
ImaxImin==⎛⎜
⎜
⎜⎝35+135−1⎞⎟
⎟
⎟⎠2=161=16:1
Hence, option (A) is correct.