1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definite Integral as Limit of Sum
n→∞lim [1/√n2...
Question
lim
n
→
∞
[
1
√
n
2
−
1
2
+
1
√
n
2
−
2
2
+
…
+
1
√
2
n
−
1
]
=
A
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
/
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3
π
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
π
/
2
l
t
n
→
∞
1
n
[
1
√
1
+
(
1
/
n
)
2
+
1
√
1
+
(
2
/
n
)
2
+
.
.
.
.
.
.
.
.
.
]
l
t
n
→
∞
1
n
∑
n
r
=
1
1
√
1
+
(
2
/
n
)
2
⇒
∫
1
0
1
√
1
−
x
2
d
x
=
s
i
n
−
1
(
x
)
|
1
0
=
π
/
2
Suggest Corrections
0
Similar questions
Q.
The value of
lim
n
→
∞
[
n
n
2
+
1
2
+
n
n
2
+
2
2
+
.
.
.
+
1
2
n
]
is
Q.
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
+
.
.
.
+
1
5
n
)
is equal to :
Q.
Evaluate
lim
n
→
∞
[
1
√
n
2
+
1
√
n
2
+
1
+
1
√
n
2
+
2
+
.
.
.
.
.
.
.
.
.
+
1
√
n
2
+
2
n
]
Q.
The sum of the first n terms of the series,
1
2
+
2.2
2
+
3
2
+
2.4
2
+
5
2
+
2.6
2
+
…
.
i
s
n
2
(
n
+
1
)
2
, when n is even. When n is odd, the sum is
Q.
The value of
lim
n
→
∞
[
n
1
+
n
2
+
n
4
+
n
2
+
n
9
+
n
2
+
⋯
+
1
2
n
]
is equal to
[Bihar CEE 1994]