limn→∞ ((n+1)(n+2)...3nn2n)1n is equal to:
p=limn→∞[(n+1)(n+2)(n+3).....(n+2n)n n......n]1n
log p = limn→∞1n∑2nr=1log(n+rn)
=2∫0log(1+x)dx
=[log(1+x)dx]20−2∫01.x1+xdx
= 2 log 3 - [2∫0(1−11+x)dx]
= 2 log 3 - [x−log(1+x)]20
= 2 log3 – (2 – log3)
log p = 3log 3 – 2
p = e3 log3−2=elog27e2=27e2