The correct option is C tan−12
∑nr=1cot−1(r2+34)=∑nr=1tan−1(1r2+(34))
=∑nr=1(r+12)−(r−12)1+(r−12)(r+12)
=∑nr=1[tan−1(r+12)−tan−1(r−12)]
=(tan−132−tan−112)+(tan−152−tan−112)+⋯+tan−1(n+12)−tan−1(n−12)
=tan−1(n+12)−tan−112
∴limn→∞∑nr=1cot−1(r2+34)=tan−1(n+12)−tan−112
=π2−tan−112=cot−112=tan−12