The correct option is D 13
Given expansion
=n∑r=1[r⋅(n−r+1)2]n∑r=1r3=limn→∞ n∑r=1(n+1)2 r−2(n+1)r2+r3n2(n+1)24
=limn→∞(n+1)2 n(n+1)2−2(n+1)n(n+1)(2n+1)6+n2(n+1)24n2 (n+1)24
∵ Degree of numerator =Degree of denominator
Given limit =12−23+1414
=2−83+1=9−83=13