limn→∞(1n+n2(n+1)3+n2(n+2)3+...+18n) is equal to
38
14
18
78
limn→∞[(1n+n2(n+1)3+n2(n+2)3+...+18n)]
=limn→∞[n2(n+0)3+n2(n+1)3+n2(n+2)3+....+n2(n+n)3]
=limn→∞∑nr=01n1(1+rn)3
=∫10dx(1+x)3=[−12(1+x)2]10
=−12(14−1)=38
limn→∞1.n2+2.(n−1)2+3.(n−2)2+.....n.1213+23+....n3